Course Content
Chapter 1: Introduction to Computing & Computational Thinking
Description: Kicks off Year 7 by transitioning from ICT to Computer Science. Students learn what computing entails beyond using applications. They explore how to think computationally – breaking down problems and designing step-by-step solutions. This chapter reinforces problem-solving skills without duplicating Year 6 work, by diving into the concepts behind tasks they may have already done. Subtopics include: The difference between ICT (using software) and Computer Science (understanding and creating technology). The four pillars of computational thinking: decomposition, pattern recognition, abstraction, and algorithms​ stjohnsschoolcyprus.com . Real-life algorithms (e.g. recipe or daily routine) to illustrate sequencing and logical steps. Flowcharts and simple pseudocode as tools to plan out solutions. Applied Activity: Designing an algorithm for a familiar task (e.g. a simple game or making a sandwich) and drawing a flowchart to represent it. Learning Objectives: Define what computer science is and how it differs from general ICT use. Explain and apply key computational thinking terms (decomposition, patterns, abstraction, algorithms)​ stjohnsschoolcyprus.com in solving a problem. Develop a simple algorithm independently and represent it in a flowchart or pseudocode. Understand that computational thinking helps prepare for programming and problem-solving in technology. Subchapter 1.1: From ICT to Computer Science Focus: Clarifying how ICT differs from Computer Science. Content: Real-world examples showing the shift from “using tools” (ICT) to “understanding and creating tools” (CS). Why: Helps students see the big-picture purpose of studying Computer Science at Year 7 level. Subchapter 1.2: The Four Pillars of Computational Thinking Focus: Explaining decomposition, pattern recognition, abstraction, and algorithm design. Content: Simple, relatable examples (e.g., decomposing a daily routine, finding patterns in everyday tasks). Why: Ensures students grasp the core thought processes underlying all coding and problem-solving. Subchapter 1.3: Real-Life Algorithms Focus: Showing how algorithms (step-by-step instructions) apply to daily life. Content: Familiar tasks (making a sandwich, brushing teeth) that illustrate sequences and logic. Why: Builds on computational thinking by demonstrating that algorithms aren’t just for computers. Subchapter 1.4: Flowcharts and Pseudocode Focus: Introducing these planning tools as ways to represent algorithms. Content: Basic flowchart symbols, writing short pseudocode, walking through small examples. Why: Equips students with practical techniques for structuring and testing their ideas before coding.
0/9
Chapter 2: Computer Systems – Hardware and Software
Description: Introduces the basic architecture of computer systems, building on any device familiarity from primary school. This chapter ensures students know how a computer works internally without getting overly technical. It expands on Year 6 knowledge (e.g. using tablets or PCs) by looking “under the hood” at components and system software, rather than repeating how to use them. Subtopics include: Main hardware components: input devices, output devices, CPU (processor), memory (RAM), storage (HDD/SSD) – their roles and how they work together. The difference between hardware and software; examples of system software (operating system) vs. application software. The basic fetch–execute cycle concept (how the CPU processes instructions). Overview of how peripherals connect to a computer (ports, cables, wireless). Applied Activity: Hands-on identification of components (e.g. examining an old PC or using an interactive simulation to “build” a computer) to reinforce the function of each part. Learning Objectives: Identify and describe the function of key hardware components in a computer system. Distinguish between the operating system and application software, and understand their interplay. Outline how a simple instruction is processed by the CPU and memory (at an age-appropriate level). Demonstrate understanding by assembling a basic PC setup (physically or via a simulator) and explaining how data moves through the system.
0/10
Chapter 3: Data Representation – Binary and Media
Description: Explores how computers represent different types of information using binary code. This chapter builds on any basic binary concepts from primary (if students encountered binary puzzles) but goes further into practical representation of text and images. It avoids repetition by introducing new contexts (e.g. how their favorite songs or pictures are stored). Understanding data representation prepares students for topics like programming and networking in later years​. Learning Objectives: Explain that all data in computers (numbers, text, pictures, sound) is represented using binary digits​ Convert simple numbers from decimal to binary and vice versa. Demonstrate how text is stored by encoding a message in ASCII (e.g. writing a word in binary code). Understand how pixel images are formed and manipulate a simple image by adjusting binary values (through an unplugged activity or software). Appreciate the need for data representation techniques and how they enable all digital media.
0/12
Chapter 4: Networks and the Internet
Description: Introduces the concept of computer networks, including how the Internet works. This is likely a new topic (not covered in Year 6), so it starts with fundamentals and uses engaging, unplugged activities to demonstrate networking concepts. Students learn how computers communicate, which lays groundwork for more advanced networking in Year 8. The approach is kept basic and avoids deep technical jargon, focusing on real-world understanding of the Internet they use daily. Subtopics include: What a network is and why we network computers (sharing information, resources). Network types: LAN vs WAN; understanding the school network vs the global Internet. Internet infrastructure: Introduction to how the internet connects networks worldwide; the role of ISPs. Data transmission: Concept of data traveling in packets across the internet, and what happens when you send an email or load a webpage (simplified step-by-step). Key components: Servers, routers, switches (basic roles), and terms like IP address and URL (what they mean in simple terms). Applied Activity: “Internet as a postal system” simulation – students play roles of computers and routers, passing packets (envelopes) with addresses to simulate how data moves from one point to another. Alternatively, a semaphore flag or messaging game to demonstrate sending messages with protocols​ teachcomputing.org . Learning Objectives: Define a computer network and give examples of networks in daily life (school network, home Wi-Fi, internet). Distinguish between the Internet (global network of networks) and the World Wide Web (services/content). Describe in simple terms how data is broken into packets and routed from a sender to a receiver across a network. Identify basic network components (router, server, etc.) and their purpose in enabling communication. Understand real-world implications of networks (e.g. speed, reliability, the need for network security, which links to the next chapter).
0/13
Chapter 5: Cybersecurity and Online Safety
Description: Focuses on keeping information and devices secure, combining online safety taught in primary school with new cybersecurity concepts. It builds on Year 6 e-safety (such as safe passwords and stranger danger online) by introducing how and why cyber threats occur. Students learn practical ways to protect themselves and understand the basics of cybersecurity, preparing them for deeper security topics in later years (which might include more technical details in Year 9)​
0/12
Chapter 6: Computing Ethics and Digital Citizenship
Description: Engages students with the ethical, legal, and social implications of technology. This chapter broadens their perspective beyond just using technology, building on their online safety knowledge to cover topics like digital etiquette, intellectual property, and the digital divide. It does not repeat basic rules learned in Year 6; instead it introduces new dilemmas and discussion about how computing affects society and our responsibilities as users. Real-world cases and scenarios make this topic tangible and prepare students to be thoughtful tech users in Year 8 and beyond
0/11
Chapter 7: Algorithms and Problem Solving
Description: Now that students have a grasp of computational thinking (from Chapter 1), this chapter dives deeper into designing and understanding algorithms for tasks. It serves as a bridge between the abstract idea of an algorithm and actual coding in the next chapters. There is no repetition of the earlier algorithm content; instead, this chapter introduces more structured ways to represent algorithms (like pseudocode) and simple algorithmic problems to solve. This prepares students for formal programming by solidifying how to plan solutions logically.
0/12
Chapter 8: Programming Fundamentals with Visual Languages
Description: Introduces programming in a visual/block-based language (such as Scratch) to build confidence with coding concepts in a beginner-friendly environment. Many students may have used Scratch in Year 6, so this chapter quickly reviews the basics without reteaching old projects, then pushes into new territory (like using more complex logic or creating larger programs). The aim is to cover core programming constructs in practice: sequences, loops, variables, and conditionals. Students engage in hands-on coding projects that make learning fun and concrete.
0/10
Chapter 9: Introduction to Text-Based Programming
Description: This chapter transitions students from block-based coding to a text-based programming language, such as Python. It builds directly on the logic and structures learned in Scratch, showing students the equivalent in a written syntax. By starting simple and possibly using tools that make the transition easier (for example, using a beginner-friendly code editor or a hybrid block/text tool), students avoid feeling like they are starting from scratch (pun intended). This prepares them for more rigorous programming in Year 8 and 9, as required by the curriculum (using at least one textual language in KS3)​
0/14
Chapter 10: Data Handling and Spreadsheets
Description: Shifting focus from programming, this chapter teaches data handling skills using spreadsheets – an essential aspect of computing and digital literacy. It extends students’ Year 6 experience (they might have made simple charts or tables before) by introducing more powerful features of spreadsheet software. Through practical exercises, students learn how data is organized, analyzed, and visualized, linking to real-world applications (such as basic data science or keeping records) and setting the stage for database concepts in later years.
0/12
Chapter 11: Creative Computing Project (Digital Media and Information Literacy)
Description: This chapter allows students to apply their computing knowledge in a creative, cross-curricular project. They will plan and develop a digital product – for example, a simple web page or blog, a short video, or an interactive multimedia presentation – around a real-world cause or topic of interest. The aim is to synthesize skills from earlier chapters (graphics, text handling, ethical use of content, maybe a bit of HTML or using a website builder) and bolster their information literacy. By doing so, students see the real-world application of computing tools and practice designing for an audience​
0/15
Chapter 12: Capstone Challenge and Review
Description: The final chapter of Year 7 is a capstone that ties all the topics together in a cumulative challenge or showcase. Students undertake a project or a set of challenges that require them to draw on multiple skills learned throughout the year – from programming and data handling to ethical thinking. This ensures a smooth progression to Year 8 by reinforcing Year 7 content and giving teachers a chance to identify areas that need review. It is also an opportunity for students to celebrate what they’ve created and learned.
0/4
Final Exam
0/1
Appendix
0/1
Year 7 Computer Science
About Lesson

Problem-solving is one of the most fundamental skills in computer science. Before coding an actual program, a problem must be fully understood, broken down, and structured into a logical solution. This chapter explores key problem-solving strategies that are commonly used in algorithm design.

1. Understanding Problem-Solving in Computing

In computing, problem-solving is the process of identifying a problem, breaking it down into smaller components, and designing an effective solution using structured logic. Well-designed problem-solving methods lead to efficient algorithms that can be implemented in a programming language.

A structured approach to problem-solving ensures that solutions are:

  • Clear and logical – Easy to understand and follow.
  • Efficient – Minimizing redundant steps.
  • Reusable – Can be applied to similar problems with minimal modifications.

The Four Steps of Problem-Solving in Computing

  1. Understanding the Problem – Identify what needs to be solved.
  2. Breaking the Problem Down (Decomposition) – Divide the problem into smaller, manageable parts.
  3. Designing a Solution – Develop a logical sequence of steps (algorithm).
  4. Testing and Improving – Run sample data through the solution and refine it.

2. Decomposition: Breaking Down a Complex Problem

What is Decomposition?

Decomposition is the process of breaking a large, complex problem into smaller, more manageable parts. Each part can then be solved individually before being combined into a complete solution. This strategy is widely used in both computational thinking and real-world problem-solving.

Why is Decomposition Important?

  • Makes complex problems easier to handle – Instead of tackling an overwhelming task, decomposition allows us to solve one small part at a time.
  • Increases efficiency – Each component can be optimized separately.
  • Encourages reusability – Some components can be used for other tasks.
  • Improves debugging – Errors are easier to find and fix when working with smaller sections.

Example: Organizing a School Event

Imagine you are planning a school event. Instead of trying to do everything at once, you can break the task into smaller steps:

  1. Invitations – Create and send out invitations.
  2. Venue Setup – Arrange seating, decorations, and technical setup.
  3. Scheduling – Create a timetable for performances and speeches.
  4. Food & Drinks – Arrange catering for attendees.

By solving each smaller problem individually, the entire event becomes easier to organize and execute.

Example: Decomposing a Computer Program

If you are designing a calculator program, you can break it down into smaller functions:

  • User Input – Accept numbers and operators from the user.
  • Processing – Perform calculations (addition, subtraction, multiplication, division).
  • Output – Display the result.

Each function can be coded separately and tested before integrating them into the complete calculator.

3. Testing for Correctness

Once an algorithm has been designed, it must be tested to ensure it produces the correct results. Testing can reveal logical errors or inefficiencies in the algorithm.

Methods of Testing an Algorithm

  • Dry-Run Testing – Manually step through the algorithm with sample inputs.
  • Tracing Execution Flow – Follow how variables and logic behave in each step.
  • Using Test Cases – Run the algorithm with multiple test cases to check for errors.

Example: Testing a Sorting Algorithm

Imagine you create an algorithm to sort a list of numbers. You can test it with different sets of numbers to check if the results are correct.

Test Cases:

Input List

Expected Output

[5, 2, 8, 3]

[2, 3, 5, 8]

[9, 1, 4, 7]

[1, 4, 7, 9]

By running these test cases, you can verify if your algorithm works correctly.

4. Combining Strategies for Stronger Solutions

Decomposition is useful, but it is often necessary to combine multiple problem-solving strategies to develop a robust solution.

Key Strategies to Combine

  1. Decomposition – Breaking down a problem into parts.
  2. Algorithmic Constructs – Using sequencing, selection, and iteration (covered in 7.2).
  3. Testing and Debugging – Ensuring correctness and efficiency.

By integrating these strategies, programmers create solutions that are both logical and effective.

Example: A Password Verification System

Suppose you need to design a system that checks if a user’s password meets certain criteria (e.g., contains numbers and symbols, has at least 8 characters). You can combine multiple strategies:

  • Decomposition: Split the task into smaller checks (length check, character type check, etc.).
  • Selection: Use if statements to verify each condition.
  • Iteration: Use a loop to check each character in the password.

By applying these strategies together, you ensure the password system functions correctly.

5. The Importance of Critical Thinking in Problem-Solving

Even with structured strategies, problem-solving requires critical thinking.

Traits of a Good Problem-Solver in Computing

Persistence – Not giving up if the first solution doesn’t work.
Logical Analysis – Thinking through each step carefully.
Creativity – Finding different ways to solve a problem.
Attention to Detail – Catching errors before they become major issues.

Example: Debugging a Program

A student writes a program to calculate the area of a rectangle, but it gives incorrect results.

Problem:

length = input(“Enter length: “)

width = input(“Enter width: “)

area = length * width

print(“The area is:”, area)

 

Bug:

The program doesn’t multiply numbers correctly because input() returns a string, not a number.

Fix:

length = int(input(“Enter length: “))

width = int(input(“Enter width: “))

area = length * width

print(“The area is:”, area)

 

By analyzing and debugging the code, the error is corrected.

6. Summary

  • Decomposition helps break down complex problems into smaller, solvable parts.
  • Testing ensures an algorithm works correctly before implementing it in a program.
  • Combining problem-solving strategies results in better solutions.
  • Critical thinking is essential to solve problems efficiently and improve algorithms.

By mastering these skills, students will be better prepared for coding and algorithm development in future chapters.